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Abstract

In this paper, the aim is to find the non-linear mode shapes and natural frequencies for a class of one-
dimensional continuous damped systems with weak cubic inertia, damping and stiffness non-linearities.
This paper presents general formulations for natural frequencies and mode shapes with all non-linearity
effects. Initially the non-linear system with general boundary conditions is discretized, and using a two-
dimensional manifold, the model of cubic non-linearities is constructed and the general equation of motion
which governs non-linear system is derived. The method of multiple scales is then used to extend the non-
linear mode shapes and natural frequencies. During this analysis, it is realized that when the natural
frequencies of the linear system become equal to the natural frequencies of the non-linear system a one-to-
one internal resonance will appear. Also, there is a three-to-one internal resonance which is not dependent
on the damping of the system. Finally, general formulations of amplitude for vibrations, natural
frequencies and mode shapes of the non-linear system are obtained in parametric forms. Thus, a non-linear
problem with some simple integration can be solved. The formulations are capable of handling any non-
linearities in inertia, damping, stiffness, or any combination of them under any arbitrary boundary
conditions.
r 2003 Published by Elsevier Ltd.

1. Introduction

Models are presented in this paper in order to construct the non-linear mode shapes and natural
frequencies of one-dimensional continuous damped or undamped systems with weak cubic inertia,
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damping and stiffness non-linearities. It is well known that the natural frequencies of a linear
system are invariant quantities, but in geometrically non-linear systems they become variant due
to the variation of vibration amplitude.
Several papers report studies of non-linear continuous multi-degree-of-freedom systems.

Vakakis and Rand [1,2] obtained the non-linear normal modes of a conservative two-degrees-of-
freedom non-linear system. Shaw and Pierre [3,4] obtained the governing differential equations of
motion for a weakly non-linear discrete and continuous system. Nayfeh et al. [5,6] studied the
non-linear normal modes of continuous undamped systems. They used the method of real
manifold approach, the method of complex manifold approach, and the method of multiple scales
to construct mode shapes and natural frequencies of the continuous systems with general
boundary conditions. They constructed the natural frequencies and mode shapes of the system
with combined non-linear inertia and stiffness, using three methods as the verification of the
results. In the other works, Nayfeh [7,8] obtained the normal modes of the cantilever and simply
supported beams. Here, the non-linearities were due to inertia and stiffness terms. Nayfeh and
et al. [9] also considered the damping parameters individually to study the non-linear system
response and bifurcations. Foda [10] studied the non-linear free vibration of a beam considering
shear deformation and rotary inertia.
The non-linear modes of damped systems are mostly used in the design of vibration absorbers.

In such problems, non-linearity of damping should be considered but the non-linearity in inertia
and stiffness are generally neglected. For a more precise result, a combined non-linearity should
be considered. Pai and Schulz [11] designed a non-linear vibration absorber and improved its
stability. Also, Nayfeh and colleagues [12–14] studied non-linear vibration absorbers using the
method of multiple scales.
Among the different analytical methods to solve the non-linear problems, the method of

multiple scales is one of the most popular. This method, unlike the numerical methods, provides a
better understanding and physical insight into the characteristics of the non-linear problems. This
method is used by Nayfeh in different papers. Also, Hamdan and et al. [15] compared this method
with other available methods in studying the non-linear vibrations.
In this paper, general formulations for the non-linear natural frequencies and mode shapes of a

non-linear continuous system with non-linearities in inertia, damping and stiffness and for any
boundary conditions are presented. The formulations can be used individually for any type of
non-linear parameter of inertia, damping, stiffness, or all together.

2. Problem identification

In non-dimensional form, the equation of motion for a continuous damped system with weak
cubic inertia, damping and stiffness non-linearities may be expressed as

.yðx; tÞ þ c ’yðx; tÞ þ L½yðx; tÞ� þN½ .y; ’y; y� ¼ 0 ð1Þ

in which c is a damping factor, the dot symbol indicates differentiation with respect to time t: The
operator L is a self-adjoint linear spatial operator; and N is a non-linear spatial operator on y:
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The homogeneous boundary conditions are given by

B1½yðx; tÞ� ¼ 0 at x ¼ 0 and B2½y; ðx; tÞ� ¼ 0 at x ¼ 1 ð2Þ

for which B1 and B2 are homogeneous spatial operators.
For a linear problem, i.e., the system with N�0, there are n natural frequencies on

corresponding to the linear mode shapes pnðxÞ: The inner product between two functions f ðxÞ and
gðxÞ is defined by

/f ðxÞ; gðxÞS ¼
Z 1

0

f ðzÞgðzÞ dz; ð3Þ

Since the operator L is a self-adjoint operator, the mode shapes pnðxÞ will be orthogonal.
Considering the above definition, the mode shapes pnðxÞ may be normalized using the following
equation:

/pnðxÞ; pmðxÞS ¼ dnm; ð4Þ

where dnm is the Kronecker delta. Moreover,

/L½ pnðxÞ�; pmðxÞS ¼ o2
ndnm; ð5Þ

/cpnðxÞ; pmðxÞS ¼ 2#zondnm; ð6Þ

where #z is the damping factor.
To discretize Eqs. (1) and (2) using the expansion theorem, yðx; tÞ may be expressed as

yðx; tÞ ¼
XN
n¼1

pnðxÞqnðtÞ; ð7Þ

where qnðtÞ are the time-dependent portion of the solution.
Substituting Eq. (7) into Eq. (1) and taking the inner product of the resulting equation with

pjðxÞ; gives

.qj þ 2#zoj ’qj þ o2
j qj þ Gjðq; ’q; .qÞ ¼ 0 for j ¼ 1; 2;y; ð8Þ

where

Gjðq; ’q; .qÞ ¼ pjðxÞ;N
XN
m¼1

pmðxÞqmðtÞ;
XN
m¼1

pmðxÞ ’qmðtÞ;
XN
m¼1

pmðxÞ .qmðtÞ

" #* +
: ð9Þ

There are different methods to expand the non-linearity term expressed in Eq. (9). Here, a two-
dimensional manifold is used to expand the non-linear terms. To construct the manifold, Eq. (8) is
rewritten as a system of two first order equations:

dqj

dt
¼ rj; ð10Þ

drj

dt
¼ �2#zoj ’qj � o2

j qj � Gj: ð11Þ
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The property of this two-dimensional manifold is that when the non-linearity vanishes, there
will be k linear modes. Using qk and pk parameters, the manifold will be expressed as

qjðtÞ ¼ Qjkðqk; rkÞ and rjðtÞ ¼ Rjkðqk; rkÞ: ð12Þ

The definition of normal-mode-invariant-manifolds is: a normal mode of motion for a non-
linear, autonomous system is a motion which takes place on a two-dimensional invariant
manifold in the system’s phase space. This manifold has the following properties: it passes
through the stable equilibrium point Qjkð0; 0Þ ¼ 0 and Rjkð0; 0Þ ¼ 0 of the system and at that point
it is tangent to a plane which is an eigenspace of the system linearized about equilibrium point [4].
Using these properties and Eqs. (10)–(12), the cubic non-linear terms will appear as

Gjðq; ’q; .qÞ ¼ g1jkq3k þ g2jkqk ’q
2
k þ g3jkq2k .qk

þ g4jkq2k ’qk þ g5jk ’q
3
k þ?; ð13Þ

where

gijk ¼ /pjðxÞ;NiðpkðxÞÞS: ð14Þ

For more details, the reader should refer to Refs. [3,4,6].
Considering all cubic non-linear terms in Eq. (13), the first term, g1jkq3k; represents the non-

linearity in stiffness or geometry. Existence of this term alone in Eq. (13) makes it the Duffing
equation, which has previously been studied. The second and third terms, g2jkqk ’q

2
k þ g3jkq2k .qk; are

due to non-linearity in inertia. The two last terms, g4jkq2k ’qk þ g5jk ’q
3
k; represent the damping non-

linearities. Nayfeh [6] studied the case of combined cubic inertia and stiffness non-linearities; for
which, Eq. (13) is written as

Gjðq; ’q; .qÞ ¼ g1jkq3k þ g2jkqk ’q
2
k þ g3jkq2k .qk þ?: ð15Þ

In most cases, the non-linear damping terms are neglected because of complexity in
calculations, or due to the fact that their values are negligible. Also, when the effects of non-
linear damping terms are considered, other non-linear terms are neglected. However,
combinations of all non-linear terms have not yet been studied. In this paper, for the first time,
the non-linearity in the form of combined cubic inertia, stiffness and damping as presented in
Eq. (13) is studied.

3. Solution using the method of multiple scales

In this part, the method of multiple scales [16–18] is used to determine the periodic solutions of
Eq. (8) in order to construct the non-linear normal modes and corresponding natural frequencies.
To apply the perturbation method the parameter e may be used as a small dimensionless
parameter to show the weakness of the non-linear terms and consider #z ¼ ez to and rewrite Eq. (8)
as

.qj þ 2ezoj ’qj þ o2
j qj þ eGjðq; ’q; .qÞ ¼ 0 for j ¼ 1; 2;y; ð16Þ

in which qj may be written as a second order expansion in the form of

qjðt; eÞ ¼ qj0ðT0;T1Þ þ eqj1ðT0;T1Þ þ?; ð17Þ
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where T0 and T1 are two time scales in a form of T0 ¼ t as a fast time scale, characterizing
motions occurring at one of the natural frequencies, ok; and T1 ¼ et as a slow time scale
characterizing a shift in the natural frequencies due to the non-linearity effect.
Substituting Eq. (17) into Eq. (16) and equating coefficients of the like powers of e; one may

obtain

ðe0Þ :
@2qj0

@T2
0

þ o2
j qj0 ¼ 0; ð18Þ

ðe1Þ :
@2qj1

@T2
0

þ o2
j qj1 ¼ �2

@2qj0

@T0 @T1
� 2zoj

@qj0

@T0
� Gj: ð19Þ

Eq. (18) shows the linear form of Eq. (16) as e-0: In this situation the non-linear modes are
reduced to kth linear mode. The solution of Eq. (18), considering the boundary conditions, may
be written as

qk0 ¼ AkðT1Þ eiokT0 þ %AkðT1Þ e�iokT0 ð20Þ

and

qj0 ¼ 0 for jak; ð21Þ

where the function Ak is an unknown at this level of approximation and will be determined by
eliminating the secular terms from the qj1 solution. Substituting Eqs. (20) and (21) into Eq. (19),
gives

@2qk1

@T2
0

þ o2
kqk1 ¼ � 2iok A0

kðT1Þ eiokT0 � %A0
kðT1Þ e�iokT0

� �
� 2izo2

k AkðT1Þ eiokT0 þ %AkðT1Þ e�iokT0
� �

� G AkðT1Þ eiokT0 þ %AkðT1Þ e�iokT0
� ��

;

iok AkðT1Þ eiokT0 � %AkðT1Þ e�iokT0
� �

;�o2
k AkðT1Þ eiokT0 þ %AkðT1Þ e�iokT0
� ��

; ð22Þ

@2qj1

@T2
0

þ o2
j qj1 ¼ � G AkðT1Þ eiokT0 þ %AkðT1Þ e�iokT0

� �
;

�
iok AkðT1Þ eiokT0

�
;

� %AkðT1Þ e�iokT0 � o2
k AkðT1Þ eiokT0 þ %AkðT1Þ e�iokT0
� ��

for jak: ð23Þ

Using Eq. (13), Eqs. (22) and (23) may be rewritten as

@2qk1

@T2
0

þ o2
kqk1 ¼ � 2iokA0

k þ 2izo2
kAk þ 3g1kk þ o2

kðg2kk � g3kkÞ
�	

þiokg4kk þ 3io3
kg5kk

�
A2

k
%Ak



eiokT0

� g1kk � o2
kðg2kk þ g3kkÞ þ iokg4kk

�
�io3

kg5kk

�
A3

ke
3iokT0g þ cc; ð24Þ

@2qj1

@T2
0

þ o2
j qj1 ¼ � 3g1kk þ o2

kðg2kk � g3kkÞ þ iokg4kk

�
þ3io3

kg5kk

�
A2

k
%Ake

iokT0

� g1kk � o2
kðg2kk þ g3kkÞ þ iokg4kk

�
�io3

kg5kk

�
A3

ke
3iokT0 þ cc; ð25Þ
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where cc stands for the complex conjugate of the preceding terms and the prime shows the
derivative with respect to T1: The terms which produce secular terms should be eliminated from
Eq. (24) as

2iokA0
k þ 2izo2

kAk þ 3g1kk þ o2
kðg2kk � g3kkÞ þ iokg4kk

�
þ3io3

kg5kk

�
A2

k
%Ak ¼ 0: ð26Þ

Then, the solution of Eq. (24) may be expressed as

qk1 ¼
g1kk � o2

kðg2kk þ g3kkÞ þ iokg4kk � io3
kg5kk

8o2
k

A3
k e

3iokT0 þ cc: ð27Þ

Substituting Eqs. (20) and (27) into Eq. (17), gives

qk ¼Ake
iokT0 þ e

g1kk � o2
kðg2kk þ g3kkÞ þ iokg4kk � io3

kg5kk

8o2
k

� A3
ke

3iokT0 þ cc: ð28Þ

The solution of Eq. (25) becomes

qj1 ¼
3g1kk þ o2

kðg2kk � g3kkÞ þ iokg4kk þ 3io3
kg5kk

o2
k � o2

j

� A2
k
%Ake

iokT0 þ
g1kk � o2

kðg2kk þ g3kkÞ þ iokg4kk � io3
kg5kk

9o2
k � o2

j

� A3
ke

3iokT0 þ cc: ð29Þ

Using Eqs. (21) and (29), the non-linear mode shapes are obtained as

qj ¼ eqj1: ð30Þ

Eq. (29) demonstrates the internal resonances with no dependency on damping. There are two
internal resonances; the first occurs when oj ¼ ok which is called a one-to-one internal resonance,
and the second is a three-to-one internal resonance, i.e., oj ¼ 3ok:
In order to obtain the non-linear natural frequencies, Ak may be expressed in polar form as

Ak ¼ 1
2

ake
ibk : ð31Þ

Then by separating Eq. (26) into the real and imaginary parts,

a0k þ zokak þ
ðg4kk þ 3g5kko2

kÞa
3
k

8
¼ 0; ð32Þ

okb
0
kak ¼

ð3g1kk þ o2
kðg2kk � 3g3kkÞÞa3k

8
: ð33Þ

In case of the presence of non-linear stiffness or inertia or a combination of these two non-
linearities, but in absence of damping, Eq. (32) will appear as

a0
k ¼ 0; ð34Þ

which means the amplitude of the vibration is constant and using fact in Eq. (33), gives

bk ¼
3g1kk þ o2

kðg2kk � 3g3kkÞ
8ok

eta2k þ bk0; ð35Þ
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where bk0 is a constant. Rewriting bk in the form

bk ¼ oNkt þ bk0; ð36Þ

where oNk is the non-linear natural frequency and using Eq. (35), provides the non-linear natural
frequency as

oNk ¼ ok þ
3g1kk þ o2

kðg2kk � 3g3kkÞ
8ok

ea2k; ð37Þ

which is equivalent to the equation obtained by Nayfeh and et al. for an undamped system [5].
However, here, where there is a combination of non-linear inertia, stiffness and damping, ak

will be a function of time. Using Eq. (32), the dependency of the amplitude of vibration on time
may be shown as

a2k ¼
8a2k0zok

8zoke2zoket þ a2k0ðg4kk þ 3o2
kg5kkÞðe2zoket � 1Þ

; ð38Þ

where and ak0 is a constant which shows the maximum amplitude of the vibration at the beginning
of the oscillations. Substituting Eq. (38) into (33), b may be obtained with respect to time as

bk ¼
3g1kk þ o2

kðg2kk � 3g3kkÞ
8ok

�
4 ln 8zoke

2zoket þ a2k0ðg4kk þ 3o2
kg5kkÞðe2zoket � 1Þ

� �
eðg4kk þ 3o2

kg5kkÞ

�

þ
8zokt

ðg4kk þ 3o2
kg5kkÞ

�
þ bk0; ð39Þ

which leads to

oNk ¼
3g1kk þ o2

kðg2kk � 3g3kkÞ
8ok

�
4 ln 8zoke

2zoket þ a2k0ðg4kk þ 3o2
kg5kkÞðe2zoket � 1Þ

� �
etðg4kk þ 3o2

kg5kkÞ

�

þ
8zok

ðg4kk þ 3o2
kg5kkÞ

�
þ ok: ð40Þ

Eqs. (39) and (40) show that bk and oNk are logarithmically dependent on the time. However,
when the amplitude of vibration is a constant and using Eq. (33), oNk is directly dependent on
time, which is to be expected.
Finally, using Eqs. (28) and (30), the non-linear mode shapes of the systems with non-linearities

in inertia, damping and stiffness, may be expressed as

yk ¼ pkðxÞ ak cosðbkÞ þ ea3k
g1kk � o2

kðg2kk þ g3kkÞ
32o2

k

cosð3bkÞ �
g4kk � o2

kg5kk

32ok

sinð3bkÞ
� �
 �

ð41Þ
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and

yj ¼ pkðxÞ
ea3k
4

3g1kk þ o2
kðg2kk � g3kkÞ

o2
k � o2

j

cosðbkÞ �
okg4kk þ 3o3

kg5kk

o2
k � o2

j

sinðbkÞ

(

þ
g1kk � o2

kðg2kk þ g3kkÞ
9o2

k � o2
j

cosð3bkÞ �
okg4kk � o3

kg5kk

9o2
k � o2

j

sinð3bkÞ

)
: ð42Þ

Eqs. (37)–(42) are general formulations which can be used in order to construct the non-linear
mode shapes and natural frequencies of the systems with any combination of non-linearities in
inertia, damping and stiffness, with different boundary conditions. Of course, in order to obtain
non-linear natural frequencies, there are two equations, (37) and (40). Eq. (37) should be used
only in the absence of damping and in other situations Eq. (40) is suggested. Using these
formulations, the analytical solution of the non-linear problems can easily be obtained by simple
integration, For a better understanding of the results of this paper, some applications will be
presented.

4. Applications

As an application, the non-linear natural frequencies and mode shapes for a hinged–hinged
beam resting on a non-linear viscous foundation is obtained. Now, this application will be solved
for two different cases of existence of non-linear damping alone and a combination of non-linear
stiffness and damping.

Case a: In this case, the partial differential equation and boundary conditions governing the
vibration motion in a non-dimensional form will be

.y þ yiv þ eað1� y2Þ ’y ¼ 0; ð43Þ

y ¼ y00 ¼ 0 at x ¼ 0 and 1: ð44Þ

It is seen that the equation of motion has the non-linearity in form of Van Der Pol equation.
Comparing Eqs. (44) and (1), then

N½ .y; ’y; y� ¼ �ay2 ’y: ð45Þ

The linear mode shapes and corresponding natural frequencies are given by

pkðxÞ ¼
ffiffiffi
2

p
sinðkpxÞ and o2

k ¼ k4p4: ð46Þ

Considering Eq. (44), it is seen that N1=N2=N3=N5=0 and

N4 ¼ ½pðxÞ� ¼ �apðxÞ3 ¼ �2
ffiffiffi
2

p
a sin3 kpx: ð47Þ

Therefore, using Eq. (14); g1kk ¼ g2kk ¼ g3kk ¼ g5kk ¼ 0 and

g4kk ¼ /pkðxÞ;N4ðpkðxÞÞS ¼ � 3
2
a: ð48Þ

Using Eq. (40), the non-linear natural frequencies are

oNk ¼ ok ¼ k2p2: ð49Þ
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Using Eqs. (38), the amplitude will be

a2k ¼
8a2k0ok

8okeaoket � 3a2k0ðe
aoket � 1Þ

: ð50Þ

Fig. 1 illustrates changes of the amplitude of the first mode versus time variations. The
vibration amplitude vanishes after about 14 s.
Using Eq. (40), the mode shapes will be obtained as

yk ¼
ffiffiffi
2

p
sinðkpxÞ ak cosðokt þ bk0Þ þ ea3k

3a
64ok

sinð3okt þ 3bk0Þ
� �

; ð51Þ

where bk0 is a constant. Fig. 2 illustrates vibrations of the mid-point of the beam in its first mode
versus time variations. Like amplitude, the first mode vibration in Fig. 2 shows that the vibrations
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vanish after about 14 s. It is seen that the frequency of vibration stay constant (the time period of
oscillations are constant), but this situation will be different in the next case.
This example shows how easily the modal properties of a non-linear system can be obtained by

the formulations offered in this paper.
Case b: This case obtains non-linear natural frequencies and mode shapes of a hinged–hinged

geometrically non-linear beam resting on a non-linear viscous foundation for which the partial
differential equation and boundary conditions governing the vibration motion in a non-
dimensional form are

.y þ yiv þ ly þ e að1� y2Þ ’y þ gy3
� �

¼ 0; ð52Þ

y ¼ y00 ¼ 0 at x ¼ 0 and 1: ð53Þ

It is seen that the equation of motion is a combination of non-linearity in stiffness and damping.
Comparing Eqs. (52) and (8), then

N½ .y; ’y; y� ¼ gy3 � ay2 ’y: ð54Þ

The linear mode shapes and corresponding natural frequencies are given by

pkðxÞ ¼
ffiffiffi
2

p
sinðkpxÞ and o2

k ¼ k4p4 þ l: ð55Þ

Considering Eq. (54), N2=N3=N5=0 and

N1½pðxÞ� ¼ gpðxÞ3 ¼ 2
ffiffiffi
2

p
g sin3 kpx; ð56Þ

N4½pðxÞ� ¼ �apðxÞ3 ¼ �2
ffiffiffi
2

p
a sin3 kpx: ð57Þ

Therefore, g2kk ¼ g3kk ¼ g5kk ¼ 0 and

g1kk ¼ /pkðxÞ;N1ðpkðxÞÞS ¼ � 3
2
g; ð58Þ

g4kk ¼ /pkðxÞ;N4ðpkðxÞÞS ¼ � 3
2
a: ð59Þ

Using Eq. (40), the non-linear natural frequencies are

oNk ¼
3g
2

ln 4aoke
aoket � 1:5a2k0aðe

aoket � 1Þ
� �

etaok

þ 1

� �
þ ok: ð60Þ

Fig. 3 illustrates changes of the first non-linear natural frequency versus time variations.
Using Eq. (41), the mode shapes will be obtained as

yk ¼
ffiffiffi
2

p
sinðkpxÞ ak cosðbkÞ þ

3

64
ea3k

g
o2

k

cosð3bkÞ þ
a
ok

sinð3bkÞ
� �
 �

; ð61Þ

where ak is the same as Eq. (50) and using Eq. (39) bk is

bk ¼
3g
2

ln 4aoke
aoket � 1:5a2k0aðe

aoket � 1Þ
� �

eaok

þ t

� �
þ bk0: ð62Þ

Fig. 4 illustrates vibrations of the mid-point of the beam in its first mode versus time variations.
It is seen that the frequency of vibration varies with time.
Comparing these two cases (Figs. 2 and 4), it is seen that non-linearities in damping alone can

not make natural frequencies non-linear. However, in the presence of non-linear inertia or
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stiffness terms, the non-linear damping terms will also affect the natural frequencies. This has
been also expressed in Eq. (40).
These two applications show the efficiency of the formulation obtained in order to calculate the

non-linear natural frequencies and mode shapes of a non-linear system. The linear mode shapes
and natural frequencies of the system can be found and then by using Eq. (14), the gijk coefficients
will be obtained. Substituting these coefficients in Eqs. (37)–(42), the non-linear natural
frequencies and mode shapes of the system are constructed.
In this application a system with combined non-linearities in inertia and stiffness will be

studied. For verification of the model, the non-linear modes of a metallic cantilever beam
which has been studied by Nayfeh et al. [7] are considered. In the non-dimensional form, the
equation of motion and boundary conditions governing vibration of a metallic cantilever
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Fig. 4. Vibrations of the middle of the beam in its first mode due to time variations. Considering ak0 ¼ a ¼ g ¼ 1:

Fig. 3. Changes of first natural frequency versus time variation. Considering ak0 ¼ a ¼ g ¼ 1; e ¼ 0:1:
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beam are given by [19]

.y þ yiv þ y0 y0y00� �0h i0
þ y0

Z x

1

Z x

0

ð ’y02 þ y0 .y0Þ dx dx

� �0
¼ 0; ð63Þ

y ¼ y0 ¼ 0 at x ¼ 0; ð64Þ

y00 ¼ y000 ¼ 0 at x ¼ 1; ð65Þ

where the prime indicates the differentiation with respect to displacement, x: Non-linear terms are

N½ .y; ’y; y� ¼ y0 y0y00� �0h i0
þ y0

Z x

1

Z x

0

ð ’y02 þ y0 .y0Þ dx dx

� �0
: ð66Þ

The linear mode shapes and corresponding natural frequencies are given by

pkðxÞ ¼ coshðzkxÞ � cosðzkxÞ þ ½sinðzkxÞ � sinhðzkxÞ�

�
coshðzkxÞ þ cosðzkxÞ
sinðzkxÞ þ sinhðzkxÞ

; ð67Þ

ok ¼ z2k ð68Þ

and the zk are the roots of

1þ cosðzkÞcoshðzkÞ ¼ 0: ð69Þ

The first and second natural frequencies are

o1 ¼ 3:51601 and o2 ¼ 22:03449;

which are obtained by graphical methods.
Non-linear mode shapes of Eq. (63) were obtained in a paper by Nayfeh et al. and the mode

shapes of linear and non-linear systems were illustrated for the second mode shape, as it is shown
in Fig. 5 [7]. As a comparison, using the formulations obtained in this paper, the linear and non-
linear mode shapes of Eq. (63) are calculated.
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Fig. 5. The linear (——) and non-linear (. . . .) mode shapes for the second mode [7].
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The non-linear terms can be written as

N1 ¼ ½y0ðy0y00Þ0�0; ð70Þ

N2 ¼ y0
Z x

1

Z x

0

’y02dx dx

� �0
; ð71Þ

N3 ¼ y0
Z x

1

Z x

0

y0 .y0� �
dx dx

� �0
: ð72Þ

Therefore, the non-linear coefficients can be obtained as

g1kk ¼
Z 1

0

pk½p0
kðp

0
kp00

kÞ
0�0 dx; ð73Þ

g2kk ¼ g3kk ¼
Z 1

0

pk p0k

Z x

1

Z x

0

p02k dx dx

� �0
dx; ð74Þ

g4kk ¼ g5kk ¼ 0: ð75Þ

For the second mode, g122=1642.14866 and g222=g322=32.07737.
Considering Eq. (75) and (32) it is found ak=constant. Using Eq. (37), the second non-linear

natural frequency will be

oN2 ¼ 22:03449� 14:875479a2k: ð76Þ

For this system, Nayfeh et al. presented the following formulation for calculating the non-linear
natural frequencies [7]

oNk ¼ ok þ
1

8ok

ð3g1kk � 2o2
kg2kkÞ ea2k ð77Þ

Using Eq. (77), the non-linear natural frequency will be the same as the results in Eq. (76). To
make a better comparison with the results of this paper and Ref. [7], refer to Eq. (37) again. In this
application, using Eq. (74), it is seen that g2kk ¼ g3kk: Upon substitution that in Eq. (37), Eq. (77)
which is presented by Nayfeh et al. [7] will be obtained. So, not only the results will precisely
match with results of Nayfeh et al. [7], but also the formulation of this paper is more general.
Also using Eq. (41) and non-linear coefficients for the second mode, the non-linear mode shape

for the second mode can be obtained

y2 ¼ coshðz2xÞ � cosðz2xÞ þ ½sinðz2xÞ � sinhðz2xÞ�
coshðz2xÞ þ cosðz2xÞ
sinðz2xÞ þ sinhðz2xÞ


 �
� a2 cosðoN2tÞf þeð�1:89914Þa32 cosð3oN2tÞ



: ð78Þ

Now, using Eq. (78) and considering a2 ¼ 1 which is similar to Ref. [7], the second mode shape of
linear and non-linear systems are illustrated in Fig. 6. Comparing Figs. 5 and 6, it can be seen how
similar they are. Also the linear and non-linear mode shapes can be compared.
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5. Conclusions

In this paper, using the perturbation method, that is, the method of multiple scales, the non-
linear mode shapes and natural frequencies of the one-dimensional continuous damped systems
are formulated. One of the advantages of using this technique is the ability to reveal the inherent
physics of the problem and parametric formulations for amplitude of vibrations, natural
frequencies and mode shapes are found. This allows the time dependency of the vibration
amplitudes and the non-linear natural frequencies of damped systems to be demonstrated. A
better controllability of the system will thus be possible. There are a one-to-one and a three-to-one
internal resonances which are not dependent on damping, i.e., existence of inertia and stiffness
non-linearities can cause these internal resonances. Here, when there is a combination of non-
linear inertia, stiffness and damping, it is seen that non-linear natural frequencies are
logarithmically dependent on time. Finally, the solution is such that it can be applied to any
combination of non-linear terms of inertia, damping and stiffness for any boundary conditions of
non-linear beams. Two applications in the form of non-linear hinged-hinged beams and non-
linear cantilever beams are considered and the non-linear mode shapes and natural frequencies of
the beams are obtained. The applications not only compare the solution method offered in this
paper with other papers, but they also show, using the formulations of mode shapes and natural
frequencies, how easily a non-linear problem can be solved with simple integrations. This method
may also be extended to two-dimensional systems.
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Appendix A. Nomenclature

a amplitude of vibration in the polar system
A amplitude of vibration
c damping coefficient
gijk coefficient
L linear spatial operator
a; g; l constant coefficients
oi natural frequencies
N non-linear spatial operator
p; q discretized mode shapes dependent on position and time.
t time
x position
e perturbation coefficient
z damping factor
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